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SU(3) in an SU(2) basis: an alternative to hypercharge 

J W B Hughes and J Yadegar 
Department of Applied Mathematics, Queen Mary College, Mile End Road, London E l  
4NS. UK 

Received 12 May 1976 

Abstract. An analysis of representations of SU(3) in an SU(2) basis is given using SU(2) 
shift operators. It is found that, apart from the hypercharge operator, there are two further 
SU(2) scalar Hermitian operators whose diagonalization leads to new bases for the 
representation space. These are modified to provide a basis which appears more suited to a 
description of the pseudoscalar meson octet than does the usual basis with diagonal 
hypercharge. 

1. Introduction 

In a previous paper (Hughes and Yadegar 1976) the algebra consisting of the generators 
lo, 1, of O(3) and two mutually Hermitian pairs of two-dimensional O(3) tensor 
operators, q*t and q*;, was considered. It was shown that out of these operators two 
pairs of operators could be constructed which shift 1 and m by *f, 1(1 + 1) and m being 
the eigenvalues of the O(3) Casimir, and lo, respectively. These operators were used to 
give a complete classification and analysis of representations of the Lie algebra of the 
seven-dimensional non-compact group 0(3),,(T2 X T2) formed by requiring that the 4,; 
and q+; mutually commute. It was found that the enveloping algebra contained three 
O(3) scalar operators Y,  and Yo, which themselves generated, on normalization with a 
suitable Casimir-dependent term, an O(3) group. 

The Lie algebra of SU(3) also contains the operators lo, I,, q,; and q*;, together 
with an O(3) scalar operator po.  The subgroup generated by lo, I ,  is usually referred to 
as an SU(2) subgroup, since in the decomposition of its representations with respect to 
this subgroup half-integral I and m values occur. This also serves to distinguish it from 
the O(3) subgroup considered by, for instance, Racah (1962), Hughes (1973a, b), for 
which only integral values of 1 and m occur. In the octet model for hadrons, SU(2) may 
be, for instance, the isotopic spin subgroup, in which case p o  is the hypercharge 
operator. 

For SU(3) the 4,; and q+; no longer commute, but their commutation relations with 
lo, I ,  are precisely the same as for 0(3)^(T2 x T2) and hence precisely the same 1 and m 
shift operators may be constructed. Moreover, its enveloping algebra contains pre- 
cisely the same SU(3) scalar operators Y,  and Yo, although they no longer generate an 
O(3) group. The operators YO, (Y+ + Y-)  and i( Y+ - Y-) are all Hermitian and any one 
of these, together with I o  and the SU(2) Casimir L 2 ,  forms a complete set of commuting 
operators with respect to the representations of SU(3). Yo can be expressed in terms of 
L2,  p o  and the third-order invariant 13, so its diagonalization is completely equivalent to 
the diagonalization of po.  This leads to the usual classification of representations of 
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SU(3) in terms of weights so familiar in the octet model for hadrons (see for instance de 
Swart 1963). The existence of (Y++ Y-) and i(Y+- Y-), and the fact that the 
diagonalization of either of these is an alternative to the diagonalization of po,  does not 
appear to have been realized before. 

We therefore give here an analysis of the irreducible representations of SU(3) in an 
SU(2) basis using the shift operators A 4, A*$. It will be seen that the familiar basis in 
which po  is diagynal correspnds to the diagonalization of products of shift operators of 
the type A*$AT2 or A*!A T2 ,  whereas the unfamiliar choice of basis,in which (Y+ I + Y-) 
or i( Y+ - Y-) is dia onal corresponds to the diagonalization of (A * 'A Ti -A "A ') or 

Although we do not claim any physical interpretation of the operators (Y++ 
Y-), i( Y+ - Y-), we consider the pseudoscalar meson octet and show that whereas the 
mesons KO and I?' are eigenvectors of hypercharge po,  the more physical short- and 
long-lived mesons Kg and KL, together with the other mesons of the octet, are 
eigenstates of a suitable linear combination of (Y+l+ + Y-L) and i( Y+l+ - Y-I-) if, and 
only if, CPT conservation is assumed to hold. 

We summarize the SU(3) commutation relations and properties of the shift 
operators in 0 2 and in 0 3 give a complete classification of matrix elements for the 
general irreducible representations (p,  q )  for the case of p o  diagonal. We do not give a 
general treatment for the cases in which (Y+ + Y-)  and i( Y+ - Y-) are diagonal, merely 
giving in 0 4 their eigenvalues and eigenvectors for the eight-dimensional representa- 
tion (2, 1) and the 27-dimensional representation (4,2). The pseudoscalar meson octet 
is discussed in 0 5 .  

i(A*'A'$ +A"A 4 ), respectively. 

2. SU(3) and its SU(2) shift operators 

The usual choice of basis for the Lie algebra of SU(3) consists of the basis ( H I ,  H2) of the 
Cartan subalgebra and the root vectors E,,, E*,=,, E*,g, whose commutation relations 
are given by, for instance, Baird and Biedenharn (1963). In order to make the notation 
correspond more precisely to that of Hughes and Yadegar (1976) we define 

io = J ~ H ~ ,  I ,  = &E,,, Po = 2H2, 
44 = &ED, 4-1 = -&E-,=,, 4-4 = &E,=,, $1 = &E-p, 

Their non-vanishing commutation relations are 

[lo,  /*I = *I*, [l+, 1-1 = 210, 

[lo,  q*;l= *sq*;, [I*,qT;I=q.i, 

h*;, 441= loT%Po,  [q+;,  $*;I = a, 
[Po,  q*;l= -4*;, [ P o ,  441 = $*;, 

(-) 1(-) (-) (-) 

and they satisfy the Hermiticity conditions 

(3) 
t t t I;= lo, I*= IT, Po = Po9 q * ~ = * $ r t .  

1212 = 4(L2 +q;$-;  - q-;$; )  + 3po(po+ 2) 

The invariants Z2, Z3, defined by Baird and Biedenharn (1963) are given by 

(4) 
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and 

4 8 4 =  (p i -4 -  121,+ 12L2)p0-810(q-;q; +qAq-t) +8(1-q44-4 -I+q-44-t)+8L2. (5) 

These are both Hermitian. 
The SU(2) scalar operators of Hughes and Yadegar (1976) are unchanged: 

Y+ = - (2qtq- i lo+q-tq-; l+-qtqt l - )  (6)  

Y o = q ~ 4 - ~ ~ o + q - ~ q ~ ~ o - q ~ 4 ~ ~ - + q - ~ 4 - ~ ~ +  (7) 

Y- = 2444-4 lo + q-iq-t1+ -q$Q 1- (8) 
and they satisfy Y: = Y- ,  YA = Yo. Hence Yo, (Y+ + Y-) and i( Y+ - Y-) are Hermitian 
operators. Unlike the case of 0(3)*(T2 x T2), however, they do not satisfy the commu- 
tation relations for an O(3) group; for instance 

[ Y+, Y-] = f( Y2 - L2(3p0 + 1))(412 - 4L - p $ )  - 3L2p0(4L2 + 1). 

4813 = po(pi - 4 - 1211 + 12L2) + 8L2 - 8 Yo 

(9) 

(10) 
so the diagonalization of Yo is equivalent to that of po. We shall therefore consider Yo 
no further in this paper. Y+ and Y- satisfy 

YO is in fact related to I3  by 

[Po, Y+1= -2 Y+, [Po, Y-] = 2 Y- (11) 
and so act as shift operators for eigenvectors of po. 

The 1 and m shift operators are given by 

(12) 

(13) 
where R is the operator whose eigenvalue is 1. Provided they act to the right on 
eigenvectors of R and 10, these operators may be replaced by their eigenvalues. The 
fact that e',*' act as 1 and m shift operators follows from the commutation relations 

( - )a  .; -(-) 
0' - q&R +lo+ l)+%l:l+ 
&L-i = d-) q-; ( R  + I o )  +(il I -  

(-) (-) 
and [ I  0, 0*'*'4] =*f" l s ' ' .  

We shall find it more convenient to use the normalized shift operators 

This effectively means that the internal SU(2) structure of the SU(3) representations has 
been divided out. 

The Hermiticity properties of these shift operators are worked out by Hughes and 
Yadegar (1976) and are 

where y denotes all additional labels, and the m dependence of the states has been 
suppressed. From equation (15) many useful relations between the matrix elements of 
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the %'*$ can be derived. We shall need the following in the next section: 

J W B Hughes and J Yadegar 

The expression for Z-commuting products of the shift operators do differ from those 
of 0(3),,(T2 x T2). They are given by the following equations, where we assume they act 
to the right on states Jy, I): 

At-$;! = 613 - 3Z21 + I(/+ 1)(1- 1) -kp0(1212-61p0+pi- 1212-4) 

Af-4 A;' = 613 + 3121 - /(I + 1)(1- 1) -$p0(1212 + 6 / p 0 + p i -  12Z2 - 4) 

(20) 

(21) 

(22) 

AFjiA f = 613 + 3Z2(I + 1) - Z(Z+ I)([ + 2) -ipo(12Z2 + 241 + 6 l p o + p i +  6 ~ 0 -  1212 + 8) 

A;.iAj = 613 - 312(i + 1) + I ( I  + 1)(I+ 2) -ipo(1212+ 241 -61p0+pi- 6p0-  12i2+ 8). 

(23) 

These equations justify the remark mad: in the introduction that the diagonalization of 
po  is equivalent to that of operators A '*A T' and A *'A whereas th? diagonalization 
of (Y+ +lY-) or i(Y+ - Y-)  imply the diagonalization of (A'*A T $  - A'*A ?*) and 
i(A*;AT* +A"AT*), respectively. 

Finally, from equations (20) to (23) we may derive the following relations which will 
be needed in the analysis of the next section: 

- I -  

PO{ ( A  & A 1 - A & A f ) + 4 (I + 1 )[ (2 I + 1) (2 Z + 3) - 3121) 

=72(Z+ l)13-6(Z+1)(A~-.'A~+A;~'A~) 

(21+ 1) - I 1  

2(Z + 1) 2(Z+ 1) 
=- A&Af +-AA;:ilAj+i(3po-21)(21+ 1) 

3. Analysis of the irreducible unitary representations of SU(3) 

The classification of irreducible unitary representations (IUR) of SU(3) is very well 
known (see for instance de Swart 1963, Baird and Biedenharn 1963). They are uniquely 
specified by the pair (p, q) ,  where p ,  q are non-negative integers such that p aq ,  have 
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dimension $ ( p  -q  + l ) (p  + 2)(q + 1) and correspond to the following values of the 
invariants: 

(28) 

(p, q )  and (p, p - q )  are mutually contragredient. 
We give here the analysis in terms of the shift operators s)* of ( p ,  q )  in the SU(2) 

basis. We shall denote the states by / I ,  j ) ,  suppressing the p ,  q and m labels, where j 
distinguishes between different states of the same 1 value and will be defined in such a 
way as to diagonalize A *A and A A and therefore also po.  We shall also give the 
actions of Y, on 11,j); once these are known the eigenvectors and eigenvalues of 
(Y+ + Y-) and i( Y+ - Y-) can be obtained, although we shall do so only for the IUR (2, 1) 
and (4,2) in the next section. 

The first task is to determine the maximum 1 value, E which must be non-degenerate. 
This is determined by the requirement that 

1 - 1  1 2 = h 2 + q 2 - p q + 3 p ) ,  3 - 162(p -29)(2p +3-q)(p+q +3)* 

f -* 

A'lr, l )=AflK 1 ) = 0  

which imply that 
A-fAilC l )=A- fAi l [  1 )=0 .  

Using equations (24) and (25) we see that po is diagonal on 1 r, 1) and its value satisfies 

p i  = 3312 - l( f+ 2)] 

and 

p0[(2I+ 1)(2F+3)-312] = 1813. 

From these equations and the values of 12,13 in terms of p and 9 one obtains, after some 
straightforward calculations, the following equation for f: 
(2 r-p)(2i+p +4)(2T-q + 1)(2i+q + 3)(2T-p +q + 1)(2 i + p  -4  + 3) = 0. 

The only possibilities consistent with SO are r = i p ,  $(9 - 1) and i ( p - 4  - 1). 
The latter two give rise to negative values of the operator A:-hA T', which is seen from 
equation (16) to be positive definite, and can therefore be excluded. Hence we see that 

Using the formulae given at the end of 0 2, the following actions of the various 
i = +p.. 

operators may be obtained: 

We next yonsider ;he 1 = ( $ p  -4) states; since we have two independent shift 
operators, A-' and A-I, there will in general be two independent states which we may 
choose to be normalized and such that 

(1 2 p - 2 ,  1 l>aA-'Iip, I), 11 2p-2,2)oCA-4&?, I 1).  
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From (30) and (31) we see that 

whereas (32) and (33) imply that 

From the equations (16) and (17) one now obtains 

So far the states l i p  -4.1) and l i p  -&2)  are determined only up to a phase factor. 
The phases are now determined by the requirement that ( i p - ; ,  llA-*/$p, 1) and 
( b p  -i, 21A-iIip, 1) be real and non-negative. With this choice we now obtain 

We therefore see that l i p  -i, 1) and l ip  -i, 2) are eigenvectors correspqnding to 
distinct eigenvalues of both of the Hermitian operators A-'A' and APIA'; this 
guarantees their orthogonality. 

From equations (36)-(39), the actions of PO, Y,,AtA-' and AfA- '  can be 
obtained with the help of equations (24) to (27). We are then able to define the 
I = $ p  - 1 states by 

lip-1, l)OcA-i]$p-$, l),  
lip-1, 2)aA-i13p-i, l ) a A - i J i p - i ,  2). 

lip-1, 3)aA-f1ip-i ,  2) 

This should suffice to illustrate the method of defining the various I states and the 
calculation of the actions of the various operators. We state the actions on the general 
I/, j )  state in the form of a theorem which we prove by induction. The states of (p, q )  and 
the actions of the shift operators are depicted in figure 1 for the case q s i p .  
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11- 0 

'+1 

Figure 1. States of the IUR ( p ,  q )  of SU(3) for the case p 2 2q. The I values are plotted 
vertically and the j values of states, indicated by circles, are given near to the circles. Open 
arrows indicate the actions of the Ati, and full arrows indicate the actions of A t i .  

Theorem. For the state (1, j )  of the IUR ( p ,  q )  we have 

A;[/, j > =  ( )'Il+i,j) 
(21 + 1)(21 + j  + l)(p - 21 - j + 1)(21-9 + j )  

2(1+ 1) 

(21 + 1)(21 + j ) ( p  -21 -j+2)(21-q + j -  1) ' 
A-'11, j )  = ( 21 ) 11-i,j> 

poJ~, j )=5(31-q-p+3j-3)11, j )  

11, j )  = - ( j  - l ) (p  + 3 - j ) (q  + 2-j)lk j )  Ai-IAf 

A-'At)1,j)=(p-21+ l - j ) ( 2 l + j + l ) ( 2 / - q + j ) I f , j )  

A 'A - ' ( I ,  j )  = ( p  - 21 + 2 -j)(21 +j)(21- q + j - 1)(1, j )  

A'A-;Jl,j)= -j(p+z-j)(q+ l-j) lf , j)  

Y+lf, j )  = A -'A ' I 1, j )  = A 'A -' If, j )  

= (-l)'"[(j - 1)(21+j)(p - j  + 3 ) ( p  -21 - j  + 2)(q - j  +2) 

~(21--q-1+j ) ] i / l ,  j-1) 

(43) 
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Y-11, j )  = -A - - 4 - 4  A (1, j )  = -A ‘A-’ I/, j )  

= ( - 1 ) ’ [ j ( 2 I + j +  l ) ( p - j + 2 ) ( p - 2 1 - j +  l ) ( q - j +  1 ) ( 2 I - q + j ) I q l , j +  1 ) .  

(51) 
In the case where I = 0, (43) and (44) are undefined and should read 

A - f ) O , q + l ) = A - l ( O , q +  1)=0. 

Equations (41) - (44)  imply the following range for j :  

q + 1 - 2 1 s j  s q  + 1 ,  
1 s jcq+ 1 ,  
l S j S p - 2 / + 1 ,  

q + 1-21  sj s q  + 1, 
q + 1-21  s j S p  - 2 I +  1 ,  

0 s i s ; q  
+q S 1 s ;( p - q ) 
; ( p  - 4 )  s 1 s z p  

I s 2(p  - q )  
$ ( p  - 4 )  s I S iq 
$ q S l s 2 p .  1 

1 

1 0 

i 
i 1 sj s p  -21+ 1 ,  

(a 1 p a 2 q :  

(b  1 p s 2 q :  

The maximum degeneracy of 1 is ( q  + 1) for p 3 29, and ( p  - q + 1 )  for p S 2q .  

Proof. We give a proof by induction, starting from l ip,  1) and working downwards. 
Firstly, if one puts I = fp, j = 1 in equations (41) - (51)  one easily verifies that the 

actions of the various operators on l ip,  1 )  agree with those obtained earlier in this 
section. 

Next, assume equations (41)-(51) to hold for all j in the appropriate range for some 
E ’  with I’s i p .  We try to show this implies they hold for all j for I = 1’- $. First note 
that 

unless! = j ’ ,  so A’(f’-$,j)cc(l‘,j) and hence A - l A ~ l l ’ - i , j ) K l ~ ’ - i , j ) .  The action of 
A-;Ai  on / l ’ - $ , j )  can then be obtained using 

( I ’ ,  j’lA4 11’ -4, j ) ~  (l’ - 4, jIA-&\I’, j ’)* = 0 

(If- $, j (A- iA;( j ’ -$ ,  j )  = (if, jlA”-;I/’, j ) .  

In a similar manner one obtains the action of A-’A4 on l l ’ -& j> .  
Next, using thes? actions together with equations ( 2 4 ) ,  ( 2 6 )  and ( 2 7 )  we obtain the 

actionsofpo, AiA-’ and AtA-’  on 1I f - -$ , j ) .  The action of A i  a n d A t  on ll’-$,j)can 
be found using equations ( 4 3 ) ,  ( 4 4 )  and (49) ?nd ?re found to be consistent wi,th the 
formulae given in the th:or?m for Y+ll’, j )  - = 1 A ’ A - ’ / I ’ , j )  - 1  and Y-Il’, j )  = -A’A-’II’,j). 
The actions of Y+ = A -‘A ’ and Y- = -A -‘A ’ on I/’- 4, j )  can also now be found. 

Finally one defines l I ’ - l , j )  to be a normalized state proportional to 
A-’Ilf--k,j), its phase being determined by requiring (I’- l , j l A - ’ l 1 ‘ - i , j )  to be real 
and non-negative. This suffices to uniquely specify l l ’ - i , j )  except in the case, where 
I a $ ( p - q ) , J  hasitsmaximumvalue(p-21+ 1). In thatcase If’-f,j)doesnotexist and 
we determine the phase of 11’ - 1, j )  by the requiremen! that ( 1 ’  - I ,  jlA-$ )l’  - 4, j - 1 )  be 
real with sign equal to ( - l ) ’ + ’ .  The actions of A-’ and A-f on l I ’ -$ , j )  are then 
determined using equations (16) and (17).  

In all cases the formulae obtained are as stated in the theorem with 1 replaced by 
V - 1 .  The proof of the theorem then follows by induction. 

From the results of the theorem, the actions of the 0 on states ( p ,  q ;  I ,  m, j )  can be 
obtained and thence, via the Wigner-Eckart theorem applied to SU(2), the matrix 

‘-’*;,*; 
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elements of the orginal (&. We shall not perform this perfectly straightforward 
calculation here. 

4. Diagonalization of (Y+ + Y-) and i( Y+ - Y-) 
From equations (50) and (5  1) we see that (Y+ + Y-) and i( Y+ - Y-)  have the following 
actions on 11, j ) :  

( Y+ + Y-)lL j )  pj 11, j - 1) + p(j+ i,lk j + 1) 

i(Y+- Y-)jI, j )=ip, l l , j -  1)-iP(j+iJLj+ 1) 

(52) 

(53) 

where 

p, =(--l)’+’[(j- 1 ) ( 2 1 + j ) ( p - j + 3 ) ( p - 2 1 - j + 2 ) ( q - j + 2 ) ( 2 1 - q + j -  I)]’. (54) 

From this the calculation of the eigenvalues and eigenvectors of the two operators can 
be performed. The matrix of coefficients for fixed 1 is tridiagonal and off -diagonal, and 
the characteristic equation for the eigenvalues involves continued fractions. The 
calculation of the eigenvalues for the top few I values results in increasingly complex 
expressions and does not lead the authors to believe that closed form expressions for the 
general case can be obtained easily. We content ourselves therefore with their 
calculation for particular examples. 

The most trivial cases are the IUR ( p ,  0) and ( p ,  p ) ,  for which no degeneracies occur. 
In both cases all matrix elements of the two operators vanish as, therefore, do their 
eigenvalues. For the general IUR ( p ,  9), the 1 = p / 2  and 1 = 0 states also correspond to 
zero eigenvalues of (Y+ + Y-)  and i( Y+ - Y-) .  

The simplest case for which non-zero values of the operators occur is the eight- 
dimensional (2, l), for which I = 1, ;, 0. I = 1 and 1 = 0 are non-degenerate and 1 = ; is 
doubly degenerate: 

( Y+ + Y-)j 1) = i( Y+ - Y-)I 1) = O 

(Y+ + Y-)$, 1) = -3l$, 2) ,  i( Y+ - Y-)($,  1) = 3i($, 2 )  

(Y+ + Y-)$, 2)  = -3l$, l), i( Y+ - Y-)li, 2)  = -3ili, 1)  

(Y+ + Y-)IO) = i( Y+ - Y-)IO) = 0. 

1 1 1 
J 2  J 2  

The eigenvectors of (Y+ + Y-)  are easily found to be 

15, *I)=-IIt, l)*-I$, 2)  

where 

(Y+ + Y-)j;, *I) = *31$, * I ) .  

For i( Y+ - Y-) we have 

1 1 i 1% *I? = -I& 1) T- 14, 2)  J 2  J 2  

where 
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For the 27-dimensional IUR (4,2), 1 = $, 4 are doubly degenerate and 1 = 1 is triply 
degenerate. The eigenvectors of (Y+ + Y-)  are 

3 1 1 
12, * I >  =$ l)+-l$, J 2  2) 

where 
(Y++ Y-)l$, * I )  = *101;, * I ) ,  

11, * Z ) = $ / l ,  l)T--ll, 2)-$11,3) 
1 

J 2  

1 1 
ILO)=J$l,  l)+-+, J2 3) 

where 
(Y+ + Y-)ll, * I )  = *4fi11,  *I), (Y++ Y-)/l,  0)  = 0, 

and 
1 1 1 

12, * I )  = J 2  -[14,2)*--/$, J 2  3) 

where 
(Y+ + Y-)l$, * I )  = *ts(l, * I ) .  

For i( Y+ - Y-) the eigenvectors are 

1 
11, * I f ) = i p ,  l)*JZIl, 2 ) 4 1 , 3 )  

1 1 
11, Of)=J$1, l)--/l, 3) J2 

1 1 I$, * I f )  = -I$, 2) =F - I;, 3). J 2  J 2  

The primed states correspond to the same eigenvalues of i( Y+ - Y-) as the correspond- 
ing unprimed states did to (Y+ + Y-).  

5. The pseudoscalar meson octet 

We consider in this section the SU(3) symmetry of strong interactions of hadrons, 
specifically the pseudoscalar mesons which transform as the (2 , l )  IUR. If we interpret 
L’, lo and p o  as (total isotopic spin)’, the third component of isotopic spin, and 
hypercharge, respectively, the particles may be identified with the 12, m ; j )  states as 
follows: 

7r*=11, *l;  l), ?To+, 0; l), 7 =IO, 0; 1) 

K - s l L  2 ,  -1 2; 1) K O =  I$ 1. 

K+=l$, 1; 2), 2 ,  2; 2). 
(59) 3 2 ,  I), 

-L  
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However, once weak interactions are admitted, KO and Eo are unstable and the 
states which have an exponential time dependence are not KO and Ro but a linear 
combination of them, one short-lived Kg, the other KL with a lifetime of order lo3 
longer than Kg (see Steinberger 1970). These are no longer eigenstates of hypercharge, 
and we show that they correspond to the diagonalization of a modification of the 
(Y+ + Y-), i( Y+ - Y-)  operators considered in the previous sections. We divide our 
considerations into three cases: ( a )  assuming CP is conserved (which is now known not 
to be the case); ( b )  assuming CP is not conserved but CFT is conserved (thought to be 
the true situation); and ( c )  assuming T i s  conserved, but not CP. The reader is referred 
to  the article by Steinberger (1970) for a detailed discussion of CP violation and the KO 
particles, and for a derivation of the equations quoted here for the three cases. 

( a )  CPconserved. In this case we have 

or 

These look rather like the eigenstates of (Y+ + Y-)  given in equation ( 5 5 )  except that 
the m-values are wrong. The actual eigenstates of (Y++ Y-) are (ko*Kf)/J2 and 
(KO* K-)/J2, which are non-physical since they mix charge. However, if we introduce 
operators 

(62) A = Y+l++ Y-I-, B = i( Y+1+ - Y L )  

both of which are also Hermitian, and use the easily derived results 

L E o  = K-, 1-K+ = KO, l+Ko = K+, l+K- = Eo 
we find that 

A Kg = -3Ki, A KL = 3KE. (63) 

Furthermore the mesons w * ,  T O ,  7 and K* are also eigenstates of A corresponding to 
the eigenvalue 0. Now A, in addition to commuting with (isospin)* = L2,  also commutes 
with the charge operator Q = (lo+ipo). We see, therefore, that for the psuedoscalar 
meson octet it is the operators (L2,  Q, A)  that are diagonalized rather than the usual 
(L2,  lo, Po). 

( b )  CPTconserved, CP non-conserved. In this case we have 

Kg = [2( 1 + [ E  [')I-' (( 1 + €)KO + (1 - E)RO) 

KE=[2(1 + ~ E ) ~ ) ] - ' ( ( ~ + E ) K ~ - ( ~ - E ) ~ ~ )  

where E is a complex parameter determined by the extent of CP violation. 
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One may fairly easily show that if one introduces the operator 

G = A + 2ie (1  + E')-'B (66) 

then 

-3(1 -E') 3(1-c2)  GK: = K:, GK; = K:. 
1+E2 1 +e2 

The other pseudoscalar mesons are also eigenstate of G, corresponding to the eigen- 
value 0. Hence in this case, since G also commutes with Q, it is the operators (L2,  Q, G) 
which are diagonal for the physically realized pseudoscalar mesons. Note that, due to 
the complexity of e, G is not a Hermitian operator; correspondingly its eigenvalues are 
not all real, and K! and KE are not orthogonal states. 

( c )  T conserved, CP non -conserved. In this final case 

K: = [2(1+ lc/')]-'((l +€)KO+ (1 -€)KO) 

KE = [ 2 ( 1 + /E 1 ')I-' (( 1 - €)KO - ( 1 + E) R"). 
Now one easily finds that no operator of the form ( A  +CUB) exists, of which both K: and 
KE are eigenstates. Instead one finds that 

(70) 

(71) 

2 - 1  0 ( A  + 2 i ~ ( l +  e2)- lB)Kg = -3(1-  ~ ' ) ( 1  + E  ) Ks 

and 
2 -1  0 ( A  - 2 i ~ ( l +  e2)-'B)K; = 3(1-  e2)(1 + E ) KL. 

Hence it is not clear in this case whether three operators may be found which are all 
diagonal for the pseudoscalar mesons. 

Case ( b )  is the one which is now believed to be the correct description. The authors 
have been unable to find a physical interpretation of the operators A, B and G. The 
most that appears possible to state is that (L2,  Q, G )  is more appropriate a set of state 
labelling operators for the pseudoscalar meson octet than (L', f o ,po )  in that the 
physically realized particles are eigenstates of the former rather than the latter set of 
operators. One could conjecture that the same applies to the vector meson octet, 
although the value of E appearing in the definitions of G might well be different. 
However, the lifetimes of the K* resonances are so short that it is not experimentally 
possible to detect whether there are distinct particles Kto  and Kg0 with different 
lifetimes, let alone whether any CP violation occurs. 

(L2,  lo, po)  is definitely more appropriate for the baryon and anti-baryon octets, 
since the neutron is an eigenstate of po,  not of A, B or G. For the decuplet or  quark 
triplets, no f-degeneracy occurs and so all eigenstates of (L', lo, po)  correspond to zero 
eigenvalues of Ye, and are therefore automatically also ei enstates of (L2,  Q, G). Also, 
the fact that all the pseudoscalar mesons other than KL and KZ correspond to zero 
eigenvalues of G makes it difficult to put a physical scale to G. Only if particles were 
found which fit into the 27-dimensional IUR would it be possible to obtain further 
information as to the possible physical interpretation of G. 

Finally, note that some, but not all, AS # 0 decays of pseudoscalar mesons conserve 
G. Those of the pseudoscalar mesons other than the KO's certainly do, since the 
G-value of all particles concerned is zero. The KE and KZ decays clearly do  not 
conserve G. 

8 
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